CHEM 121 – Worksheet 28 – Fall 2015

Your Name: _____

You must have your own copy of this worksheet. Failure to not have your own copy results in a "0" for this worksheet.

Directions: Usual directions: first 40 minutes without notes, with non-programmable calculator and partners; next 10 minutes with notes. Last 25 minutes on the board.

- 1) Determine what is oxidized and what is reduced in each reaction. Identify the oxidizing agent and the reducing agent, also.
- A) $2Sr + O_2 \rightarrow 2SrO$
- B) $2Li + S \rightarrow Li_2S$
- C) $2Cs + Br_2 \rightarrow 2CsBr$
- D) $3Mg + N_2 \rightarrow Mg_3N_2$
- E) 4Fe + $3O_2 \rightarrow 2Fe_2O_3$
- F) $Cl_2 + 2NaBr \rightarrow 2NaCl + Br_2$
- G) Si + 2F₂ \rightarrow SiF₄
- H) 2Ca + $O_2 \rightarrow$ 2CaO

- I) Mg + 2HCl \rightarrow MgCl₂ + H₂
- J) $2Na + 2H_2O \rightarrow 2NaOH + H_2$
- 2) Give the oxidation number of each kind of atom or ion.
- a. sulfate
- b. Sn
- c. S²⁻
- d. Fe³⁺
- e. Sn⁴⁺
- f. nitrate
- g. ammonium
- 3) Calculate the oxidation number of chromium in each of the following.
- a. Cr_2O_3
- b. $Na_2Cr_2O_7$
- c. CrSO₄
- d. chromate
- e. dichromate

4) Use the changes in oxidation numbers to determine which elements are oxidized and which are reduced in these reactions. (Note: it is not necessary to use balanced equations):

a. C + H₂SO₄ \rightarrow CO₂ + SO₂ + H₂O

b. $HNO_3 + HI \rightarrow NO + I_2 + H_2O$

c. $KMnO_4 + HCI \rightarrow MnCl_2 + Cl_2 + H_2O + KCI$

d. Sb + HNO₃ \rightarrow Sb₂O₃ + NO + H₂O

5) For each reaction in problem 4, identify the oxidizing agent and reducing agent.

6) Write half-reactions for the oxidation and reduction process for each of the following.

a.
$$Fe^{2+} + MnO_4^{-1} \rightarrow Fe^{3+} + Mn^{2+}$$

b.
$$Sn^{2+} + IO_3^{-1} \rightarrow Sn^{4+} + I_2$$

c.
$$S^{2-} + NO_3^{-1} \rightarrow S + NO$$

d.
$$NH_3 + NO_2 \rightarrow N_2 + H_2O$$

7) Complete and balance each reaction by whichever method you prefer (note that there are no half reactions in this worksheet).

a.
$$Fe^{2+} + MnO_4^{-1} \rightarrow Fe^{3+} + Mn^{2+}$$

b.
$$Sn^{2+} + IO_3^{-1} \rightarrow Sn^{4+} + I_2$$

c.
$$S^{2-} + NO_3^{-1} \rightarrow S + NO$$

d.
$$NH_3 + NO_2 \rightarrow N_2 + H_2O$$

e.
$$Mn^{2+} + BiO_3^{-1} \rightarrow Bi^{2+} + MnO_4^{-1}$$

f.
$$I_2 + Na_2S_2O_3 \rightarrow Na_2S_2O_4 + Na_1$$

7) Assign **oxidation numbers** to each of the atoms in the following compounds:

Na ₂ CrO ₄	Na =	0 =	Cr =
K ₂ Cr ₂ O ₇	K =	O =	Cr =
CO ₂	0 =	C =	
CH4	H =	C =	
HCIO ₄	0 =	H =	Cl =
MnO ₂	O =	Mn =	
SO ₃ ²⁻	0 =	S =	
SF ₄	F =	S =	

8) Nitrogen has 5 valence electrons (Group V). It can gain up to 3 electrons (-3 oxidation state), or lose up to 5 (+5 oxidation state) electrons. Fill in the missing names or formulas and assign an oxidation state to each of the following nitrogen containing compounds:

name	formula	oxidation state of N
	NH ₃	
nitrogen		
nitrite		
	NO₃ ⁻	
dinitrogen monoxide		
	NO ₂	
hydroxylamine	NH ₂ OH	
nitrogen monoxide		
hydrazine	N_2H_4	