Sample/Tube Number	[Urea] (mg/dL)	A ₅₂₅
Standards		
1	0	0.000
2	15	0.215
3	30	0.425
4	45	0.665
5	60	0.876
6	75	1.085
Unknowns		
7		0.675
8		0.714
9		0.695
AVERAGE		
UNKNOWN		
[Urea]		

BUN Dry Lab Data – Spring 2020 BIOL 223

Your job is to build your standard curve in Excel, remembering that to generate the standard curve, you only plot the **standard concentrations** on the X axis and the As25 on the Y axis -- the curve is NOT dot-to-dot -- use the trend line in a scatter plot without a line and force the trend line through the origin (0,0). Remember to include the line equation and the R squared value on your graph, as well. Use the standard curve (or the line equation that you put on the curve) to determine the concentration of Urea ([Urea] in mg/dL for each unknown and, then, determine the average value of the unknown samples of the [Urea].