Properties of the Noble Gases

Noble Gases – E.g.

Element→	Не	Ne	Ar	Kr	Хе	Rn
# of electrons in outer shell	2	8	8	8	8	8
Atomic radius (Å)	0.93	1.12	1.54	1.69	1.90	2.20
Critical Temperature (°C)	-267.9	-228.7	-122.3	-63.8	-16.6	105
Boiling Point	Lowest	$\rightarrow \rightarrow $			Highest	
Melting Point	Lowest	$\rightarrow \rightarrow $			Highest	

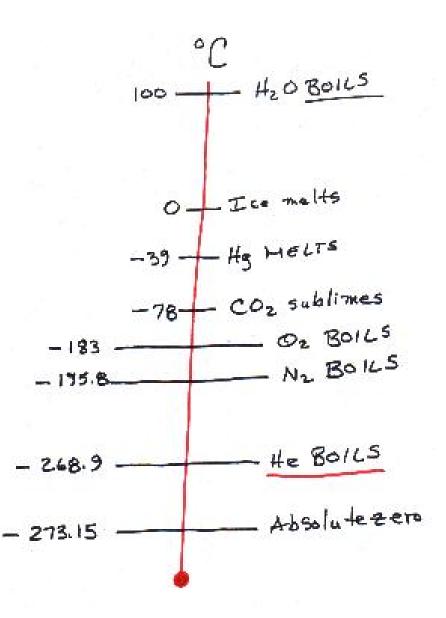
Review -- Update

- Freezing Point: is the temperature at which a liquid becomes a solid at normal atmospheric pressure.
- Melting Point: is the temperature at which a solid becomes a liquid at normal atmospheric pressure.
- Boiling Point: the temperature at which a pure solvent's or solution's vapor pressure = atmospheric pressure
- Flash Point: is the lowest temperature at which a liquid can form an ignitable mixture in air near the surface of the liquid. The lower the flash point, the easier it is to ignite the material.
- Critical Temperature: is the temperature above which a substance can not be liquified REGARDLESS how much pressure is applied.
- Critical Pressure: is the pressure required to liquify a gas at its critical temperature.

Common Substance	Critical Temperature (K)	Critical Pressure (atm)
H ₂ - ¹	33.24	12.8
N ₂	126	33.5
O ₂	154.3	49.7
CO ₂	304.2	73.0
NH ₃	405.5	111.5
H ₂ O - ²	647.1	217.7
SO ₂	430.3	77.7

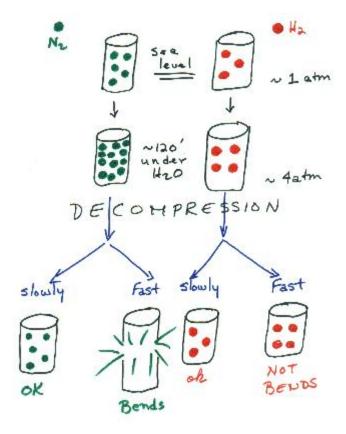
¹ -- has weak intermolecular forces; ² - has high intermolecular forces. Note the differences these forces make between critical temperatures and pressures between the two related substances.

Composition of the Atmosphere


- This topic, I believe is of importance as our atmosphere does contain noble gases.
- The table, following slide, summarizes the composition of our atmosphere.
- Keep in mind that as altitude increases, the per cent composition does not vary the PRESSURE does, e.g.,
 - at sea level, atmospheric pressure is 760 mm
 Hg;
 - at 15000 feet, 400 mm Hg;
 - at 10 miles, 40 mm Hg and
 - at 30 miles, 0.1 mm Hg.

N ₂	78%	
O ₂	20.99%	
Ar ←	0.94%	
CO ₂	0.035-0.04%	
H ₂	0.01%	
Ne ←	0.0012%	
He ←	0.0005%	
Kr ←	0.0001%	
O ₃	0.00006%	
Xe ←	0.000009%	

\leftarrow All noble gases


General Comments Regarding Noble Gases

- Some of the more common temperatures in chemistry.
- The one to emphasize is that of the boiling point of He: -268.9° C.

- He is an unusual noble gas.
- One form of ⁴He₂ has no electrical resistance.
- It has zero viscosity, i.e., it flows up and over the edges of the container until the levels of He inside and outside the container are level.
- That it has no electrical resistance makes it useful as a super conductor.
- He, also has no triple point, unlike water.
- He is used in arc welding, to fill weather balloons, to fill blimps/dirigibles (it's non-flammable).

- He is also used in deep-sea diving:
- In general, He is much less soluble in water than are either oxygen or nitrogen.
- At the high pressures of deep sea diving, LOTS of nitrogen (N₂) dissolves in water, blood and cerebrospinal fluid.
- If decompression is attained appropriately, there is no problem.
- If, however, decompression is too rapid, the person develops the bends.
- In this part of the country, this is usually fatal as there is no decompression chamber at Tahoe, any more and the closest one is at Davis, I believe.
- OTOH, if He is substituted for the N₂, even rapid decompression is not as deadly as it is for nitrogen-containing gas mixtures.
- This means that for long term deep-sea diving, the likelihood of developing the bends is greatly reduced.

- Ar is cheaper than He.
- We use about 1.5*10⁹ pounds per year.
- It is used in incandescent bulbs to prevent bulb "burn out". Ne, Ar and Xe are often coupled with Kr in "neon lights".
- The color of the light is dependent upon the composition of the gases.
- Pure Ne gives an orange-red light; pure Xe gives a blue light.

- Xenon is water soluble and has found some use in compounds as an anesthetic.
- Xe is capable of attaining one of three hybridizations: sp, dsp² or d²sp³.
- The following reactions illustrate these hybridizations:
- 1. sp hybridization:
 - Xe(xs g) + F₂(g) + >250° C + High Pressure \rightarrow XeF₂(s)
- 2. dsp² hybridization:
 - $Xe(g) + 2F_2(g) + 400^\circ C + 6 atm \rightarrow XeF_4(s)$
- 3. d²sp³ hybridization:
 - $Xe(g) + 3F_2(g) + >250^\circ C + >50 atm \rightarrow XeF_6(s)$

- Xe and Kr have many compounds.
- These compounds are generally involved with fluorine, oxygen and nitrogen, which are the most electronegative elements on the periodic table.
- While He and Ne have no known compounds, recently, reports have been coming out about new compounds with Ar.