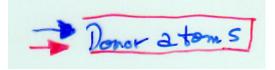
Coordination Compounds


Definitions

- Ligand: a Lewis base in a coordination compound
- Chelate: a ligand that utilizes 2 or more donor atoms in bonding to metals
- Coordination compound/Complex: a compound containing coordinate covalent bonds
- Coordinate covalent bond: the "Oral Roberts' bond"

Cont'd

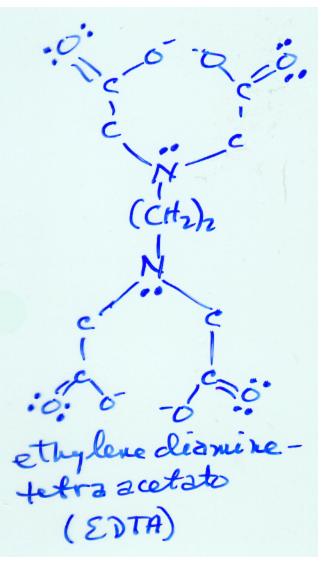
- Coordination number: the number of donor atoms coordinated to a metal
- Isomer: different substances with the same chemical formulas
- Polydentate: describes ligands with more than one donor atom
- Effective atomic number:
- The total number of electrons in the orbitals of the central metal ion after coordination occurs

Simple Ligands

Molecule	Name	Ligand Name
:N H3	Ammonia	Ammine
	Water	Aqua
:c=0	Carbon monoxide	Carbonyl

Molecule	Name	Ligand Name
:PH3	Phosphine	Phosphine
× = 0-)	Nitrogen oxide	Nitrosyl

Molecule	Name	Ligand Name
* -	Chloride	Chloro
	Fluoride	Fluoro
4		


Molecule	Name	Ligand Name
:C=N:	Cyanide	Cyano
	Hydroxide	Hydroxo
N:0:	Nitrite	Nitro

Complex Ligands

Ligand	Name	Classification
NH3 ammine "N-c-c-N"" H	Ammine	UNIdentate
ethylene désnière NN	Ethylene diamine	Bldentate

Ligand	Name	Classification
	Diethylene triamine	TRIdentate
HrN-(CH2) diethgl	12-N-(CH2)2- ere trizmine	NHZ
NNI	\checkmark	

Name	Classification
Ethylenediamine-	SEXIdentate
tetra-acetato	
(EDTA)	

Naming Metals in Complexes			
Name of Metal	NOT	T Name in Complex of ANION	
Aluminum		Aluminate	
Antimony		Antimonate	
Chromium		Chromate	
Cobalt		Cobaltate	
Copper	Copperate	CUPRate	
Gold	Goldate	AURate	
Iron	Ironate	FERRate	
Lead	Leadate	PLUMBate	
Silver	Silverate	ARGENTate	
Tin	Tinnate	STANNate	
Zinc		Zincate	

ANION	NAME	Oxidation Number of Metal	Hybridi- zation	Coordination Number
				2
$[Cu(CN)_2]^-$	Dicyanocuprate(I)	+1	sp	2
$[Zn(CN)_4]^{2-}$	Tetracyanozincate(II)	+2	sp ³	4
$[CuCl_5]^{-3}$	Pentachlorocuprate(II)	+2	dsp ³	5
$[Fe(CN)_6]^{-4}$	Hexacyanoferrate(II)	+2	d ² sp ³	6
[HgCl ₃] ⁻	Trichloromercurate(II)	+2	sp ²	3

Naming the Metal in CATION Complexes				
CATION	tion ization ation		Coordin- ation Number	
$[Ag(NH_3)_2]^+$	Diamminesilver(I)	+1	sp	2
$(Co(en)_3]^{3+}$	Tris-(ethylenediamine)cobalt(III)	+3	sp ²	3
[Ni(CO) ₄] ⁰	Tetracarbonylnickel(0)	0	sp ³	4
$[Cr(OH_2)_6]^{3+}$	Hexaaquachromium(III)	+3	d ² sp ³	6

Effective Atomic Number

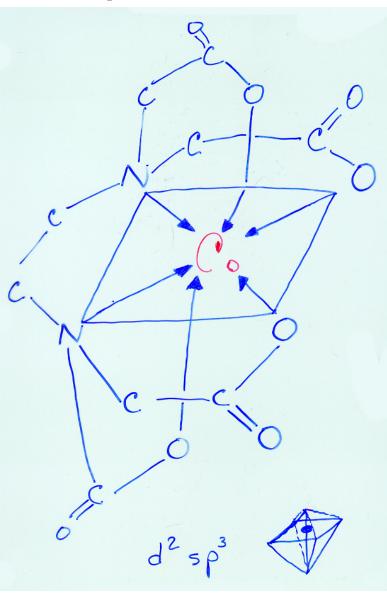
(At. No. – # e^- lost to make ion) + # additional e^- from ligand E.g.: $[Fe(CN)_6]^{4-}$

Fe At. No. $-\#e^{-}$ lost +# additional e^{-} from ligand : 26 - 2 + 12 = 36

$$[Cr(NH_3)_6]^{3+}$$

Cr At. No. - # e^- lost + # additional e^- from ligand
 $24 - 3 + 12 = 33$

$$[Cd(NH_3)_4]^{2+}$$


$$48 - 2 + 8 = 54$$

$$[PtCl_6]^{2-}$$

$$78 - 4 + 12 = 86$$

Chelated Compound

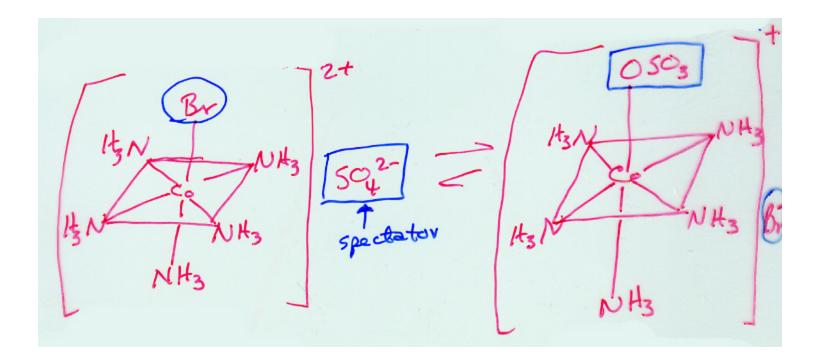
d²sp³ hybridization [Co(edta)]⁻

Nomenclature Rules

- 1. Name cations before anions
- 2. In the coordination sphere:
 - 1. Alphabetize ligands
 - 2. Use prefixes (not for alphabetic purposes)
- 3. Anionic ligand suffix = "o"
- 4. Most neutral ligands have same names except:
 - 1. $NH_3 = ammine$
 - 2. $H_2O = aqua$
 - 3. $\overline{CO} = carbonyl$
 - 4. NO = nitrosyl
- 5. Oxidation number of metals with more than one oxidation number is in "(" and ")" in Roman numerals as part of the name of the metal.
- 6. "ate" at the end of a complex = ANION
 - 1. If neutral = no suffix
 - 2. If cation = no suffix
 - 3. Use English stem for name of metal unless is awkward, then use the Latin Root

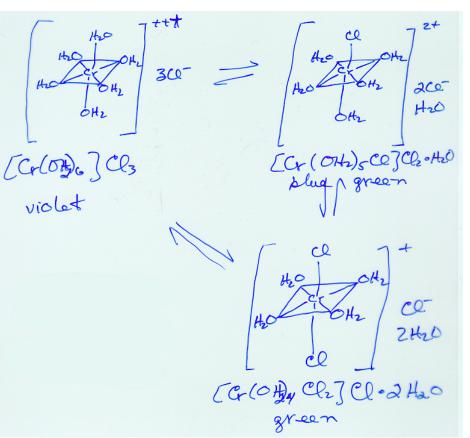
Examples -- Naming

Complex	Name
[Ni(CO) ₄]	Tetracarbonyl nickel(0)
$Na_2[Co(OH_2)_2(OH)_4]$	Sodium diaquatetrahydroxocobaltate(II)
$[Pt(NH_3)_4(NO_2)_2](NO_3)_2$	Tetraamminedinitroplatinum(II) nitrate
[CoCl ₆] ³⁻	Hexachlorocobaltate(III) ion
$[\operatorname{Co}(\operatorname{NH}_3)_4\operatorname{Cl}_2][\operatorname{Cr}(\operatorname{C}_2\operatorname{O}_4)_2]$	Tetraamminedichlorocobalt(II) dioxalatochromate(IV)
$Na[Al(H_2O)_2(OH)_4]$	Sodium diaquadihydroxoaluminate(III)
$Na_2[Pt(CN)_4]$	Sodium tetracyanoplatinate(II)
$[Co(NH_3)_6]_2(SO_4)_3$	Hexaamminecobalt(III) sulfate
$(NH_4)_2[PtCl_4]$	Ammonium tetrachloroplatinate(II)
[Co(NH ₃) ₄ Cl ₂]Cl	Tetraamminedichlorocobalt(III) chloride
[Cr(H ₂ O) ₄ Cl ₂]Cl	Tetraaquadichlorochromium(III) chloride
[PtCl ₆] ²⁻	Hexachloroplatinate(IV) ion

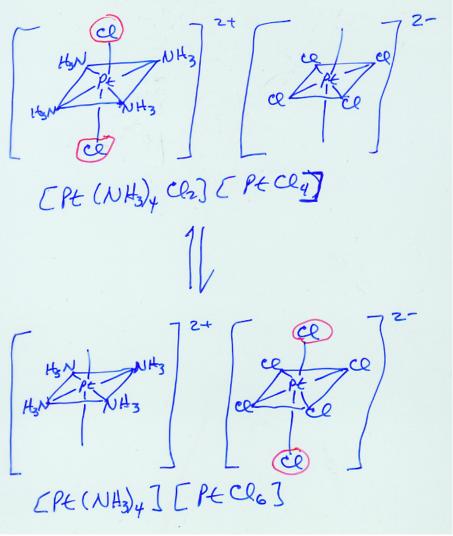

Isomers – Two Kinds

- Structural
- 1. Ionization
- 2. Hydrate
- 3. Coordination
- 4. Linkage

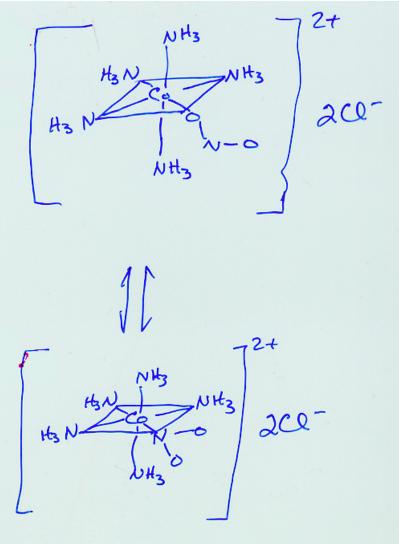
- Stereoisomers
- Geometric (positional)
- 2. Optical


Structural Isomers: Ionization

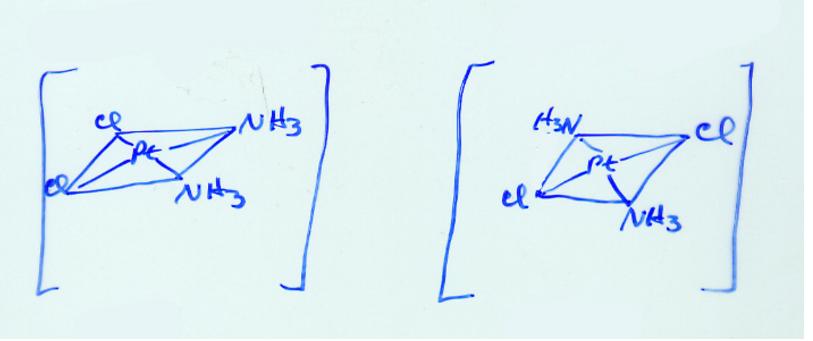
- Due to the interchange of ions inside and outside the coordination sphere ("[]")
- Red violet [Co(NH₃)₅Br]SO₄ vs red [Co(NH₃)₅SO₄] Br


Structural Isomers: Hydrate

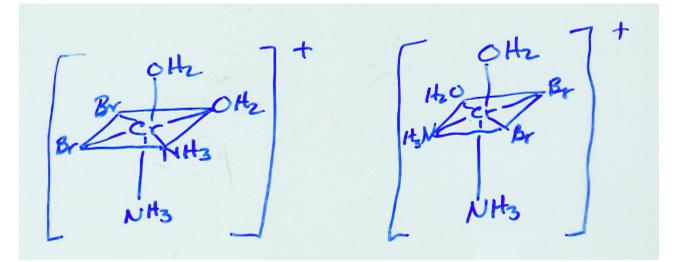
- Water inside and outside the coordination sphere
- Violet [Cr(OH₂)₆]Cl₃ vs blue green [Cr(OH₂)₅Cl]Cl₂•H₂O vs green [Cr(OH₂)₄Cl]Cl₂•2H₂O


Structural Isomers: Coordination

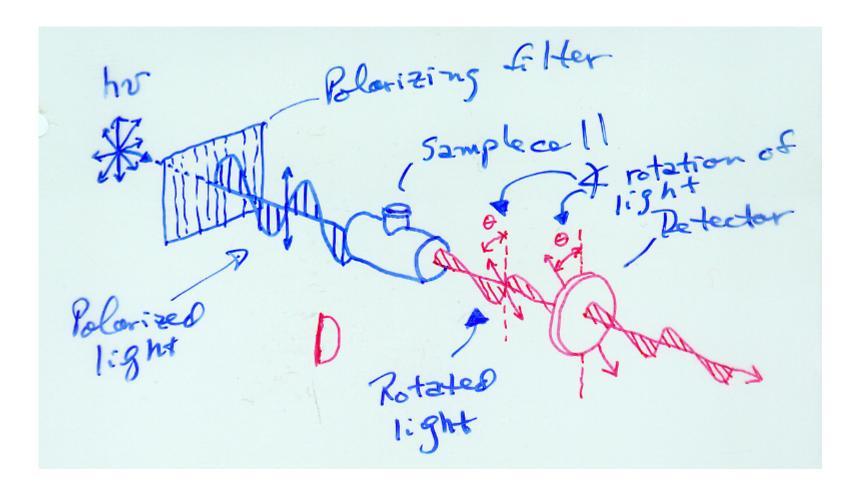
 An exchange of ligands BETWEEN coordination spheres


Structural Isomers: Linkage

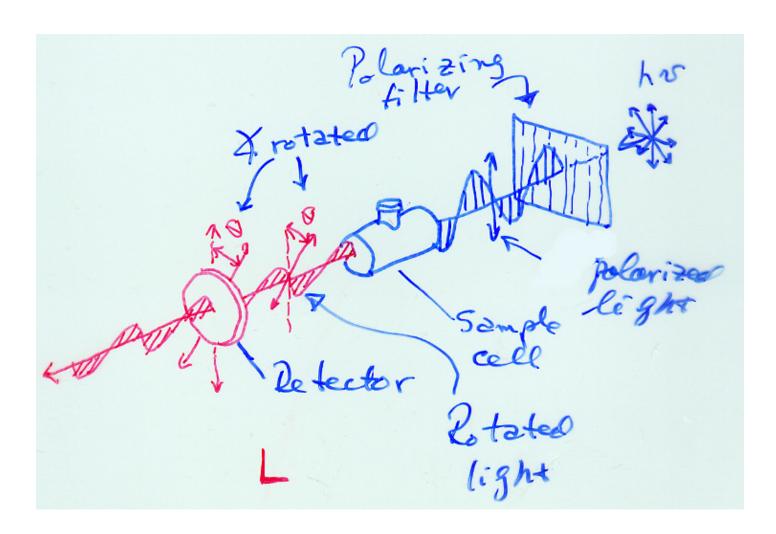
- Due to some ligands binding in more than 1 manner, e.g.,
- --CN⁻ (cyano) vs –NC⁻ (isocyano)
- --NO₂⁻ (nitro) vs –
 ONO⁻ (nitrito)
- Red (top) [Co(NH₃)₅ONO]Cl₂ – decomposes in acid vs Yellow (bottom) [Co(NH₃)₅NO₂]Cl₂


Stereoisomers: Geometric

- Complexes with only SIMPLE ligands can exist as stereoisomers ONLY if their coordination number is 4 or more.
- Positional = geometric
 - cis = adjacent to
 - trans = opposite side of
 - sp³ hybridization does not form geometric isomerism
- E.g., pale yellow cis-diamminedichloroplatinum(II) (left) vs dark yellow all-trans-diamminedichloroplatinum(II) (right)



Stereoisomers: Optical


- NON superimposable mirror images of each other; aka enantiomers
- Optical isomers rotate light
 - If to right = dextrorotatory
 - If to left = levorotatory
- E.g., BELOW all cis-[Cr(NH₃)₂(OH₂)₂Br₂]⁺

Dextrorotatory

Levorotatory

The d-transition Metals

- 1. All are metals
- 2. Most are harder than NON transition metals
- 3. Most are more brittle than NON transition metals
- 4. Most have higher MP's than NON transition metals
- 5. Most have higher BP's than NON transition metals

Cont'd

- 5. Their ions/compounds are usually colored
- 6. Form many complex ions
- 7. Exhibit MULTIPLE oxidation states
- 8. Many are paramagnetic (as well as their compounds)
- 9. Many plus their compounds are catalysts

Uses of Transition Metals

- V inhibits the Na⁺-K⁺ pump
- Cr regulates glucose transport with insulin
- Mn activates enzymes
- Fe O₂ transport and electron transfer
- $Co B_{12}^{-}$
- Ni cofactor for enzymes
- Cu redox enzymes and O₂ transport
- Zn proteinases
- Mo unknown but essential
- Cd unknown, but essential

More uses

- Cis-platin chemotherapy
- EDTA heavy metal removal
- As Dyes/pigments:

- Prussian Blue - $Fe_4[Fe(CN)_6]_3 \bullet xH_2O$

- As catalysts and reagents:
 - Fe and oxides in NH3 synthesis
 - $-V_2O_5 SO_3$ synthesis
 - FeBr₃ C₆H₅Br synthesis
 - Pt hydrogenation of unsaturated hydrocarbons

Common Alloys of the d-Transition Metals

Alloy	% compositions
Stainless Steel	Fe – 82.5; Cr – 16.5; C – 0.65; Mn – 0.35
Bronze	Cu – 70-95; Sn – 1-18; Zn – 1-25
Plumber's solder	Pb – 67; Sn – 33
Sterling silver	Ag – 92.5; Cu – 7.5
US silver coin	Ag – 90; Cu – 10
US gold coin	Au – 90; Cu – 10
18 K yellow gold	Au – 75; Ag – 12.5; Cu – 12.5
14 K yellow gold	Au – 58; Ag – 4-28; Cu – 14-28
18 K white gold	Au – 75; Cu – 3.5; Ni – 16.5; Zn – 5
Dentist Amalgam (1976)	Hg – 50; Ag – 35; Sn – 13; Cu – 1.5; Zn – 0.5 $_{32}$

Ground State Configurations: Period 4

4 th Period		
Sc	$[Ar] 3d^{1}4s^{2}$	
Ti	$[Ar] 3d^24s^2$	
V	$[Ar] 3d^54s^2$	
Cr	→[Ar] 3d ⁵ 4s ¹	
Mn	$[Ar] 3d^54s^2$	
Fe	$[Ar] 3d^{6}4s^{2}$	
Со	$[Ar] 3d^74s^2$	
Ni	$[Ar] 3d^84s^2$	
Cu	\rightarrow [Ar] 3d ¹⁰ 4s ¹	
Zn	$[Ar] 3d^{10}4s^2$	

Ground State Configurations: Period 5

5 th Period		
Y	$[Kr] 4d^{1}5s^{2}$	
Zr	$[Kr] 4d^25s^2$	
Nb	\rightarrow [Kr] 4d ⁴ 5s ¹	
Мо	$[Kr] 4d^55s^1$	
Tc	$[Kr] 4d^55s^2$	
Ru	\rightarrow [Kr] 4d ⁷ 5s ¹	
Rh	$[Kr] 4d^85s^1$	
Pd	\rightarrow [Kr] 4d ¹⁰	
Ag	$[Kr] 4d^{10}5s^1$	
Cd	[Kr] $4d^{10}5s^2$	

Ground State Configurations: Period 6

6 th Period		
La	[Xe] 5d ¹ 6s ²	
Hf	[Xe] $4f^{14}5d^36s^2$	
Та	[Xe] $4f^{14}5d^36s^2$	
W	[Xe] $4f^{14}5d^46s^2$	
Re	[Xe] $4f^{14}5d^56s^2$	
Os	[Xe] $4f^{14}5d^66s^2$	
Ir	[Xe] $4f^{14}5d^76s^2$	
Pt	\rightarrow [Xe] 4f ¹⁴ 5d ⁹ 6s ¹	
Au	[Xe] $4f^{14}5d^{10}6s^1$	
Hg	$\rightarrow [Xe] 4f^{14}5d^{10}6s^2$	35

Comment

 "s" electrons are outside the "d" electrons and are the 1st to be lost in ionization

Magnetisim – In Brief

- Paramagnetic odd numbers of electrons in outer shell -- metal attracted TO a magnet
- Diamagnetic even numbers of electrons in outer shell – metal repelled FROM a magnet
- Gouy Balance discussed in other course material – including the experiment with the magnetic susceptibility balance

Ferromagnetism

- An EXTREME form of paramagnetism
- Causes permanent magnetization
- Exhibited ONLY by Fe, Co, Ni, Gd
- NO HAMMERS!!!!!!

Ferromagnetism: Requirements

- 1. Must have an incompletely filled "d" or "f" sub-shell
- 2. Atoms must not be too close together or ODD electrons will pair up
- 3. Atoms must not be too far apart or the ODD electrons will not align the electron spins in those atoms.

Non-Zero Oxidation States of 3d Transition Metals				
Sc	+3			
Ti	+2, +3, +4			
V	+1, +2, +3, +4, +5			
Cr	+1, +2, +3, +4, +5, +6			
Mn	+1, +2, +3, +4, +5, +6, +7			
Fe	+1, +2, +3, +4, +5, +6			
Со	+1, +2, +3, +4			
Ni	+1, +2, +3, +4			
Cu	+1, +2, +3			
Zn	+2			

Г

Colors of Nitrates

- Of Representative Elements -colorless
 - Examples: Na, Ca, Mg, Al, Sn (II and IV), Pb
- Of Transition Metals
 - Cr(III): Deep Blue
 - Mn(II): Pale Pink
 - Fe(II): Pale Green
 - Fe(III): Orchid
 - Co(II): Pink
 - Ni(II): Green
 - Cu(II): Blue

Post-Transition Elements

- Zn
- Ga
- Cd
- In
- Sn
- Hg
- TI
- Pb
- Bi
- Po

Properties of Four

		-			
Element	Ga	In	Tl	Pb	
Flame Color	Violet	Blue violet	Green		
Outer Electrons	$4s^24p^1$	$5s^{2}5p^{1}$	6s ² 6p ¹	6s ² 6p ²	
Physical State	SOLID				
Atomic Radius	$Smallest \rightarrow \rightarrow \rightarrow BARELY \rightarrow \rightarrow \rightarrow \rightarrow LARGEST$				
Electronegativity	About the Same				
Comment 1	Greatest liquid state of any element (29.8° C to 2403° C)	Soft, bluish metal, used with Ag and Pb as alloys for heat conductors	Soft heavy metal that resembles Pb	Bluish-white malleable; more dense than Sn	
Comment 2	Concentrates in inflamed areas and some melanomas	electronics	TOXIC – NO important practical uses	X-ray protection, battery plates, alloys like solder 43	

Pb – from PbS -- Galena $2PbS(s)+3O_2 \longrightarrow 2PbO(s) + 2SO_2 \uparrow$ SO_2 reacts with water to form sulfuric acid limestone

$$PbO(s) + C(s) \xrightarrow{\text{Inflestone}}_{\Delta} Pb(l) + CO \uparrow$$
$$OR$$

$$PbO(s) + CO(g) \xrightarrow{\Delta} Pb(l) + CO_2 \uparrow$$

 OR

 $2PbO(s) + PbS(s) \longrightarrow Pb(l) + 2SO_2 \uparrow$ and $SO_2 \uparrow$ used to synthesize sulfuric acid

44

Pb Uses

- > 50% used in Pb storage batteries
- Pb and Sn are alloyed to make solder (not as much any more – Ag, now) and metal bearings
- Pb + Sb + Sn used to make type metals
- About 30% of all Pb is used to make
- Pigments
 - Red Lead Pb_3O_4 traditional primer for Fe and steel

- White Lead - $2PbCO_3 \bullet Pb(OH)_2$ - toxic in old houses

 Wood's Metal – used as valves in automatic sprinklers

Zn – from sphalerite -- ZnS

 $2ZnS(s) + 3O_2 \rightarrow 2ZnO(s) + 2SO_2(g)$ (H_sSO_4 synthesis, again) Reaction is exothermic and needs no heat once reaction is going.

Reduction of ZnO -- Problem

- ZnO (s) + C (s) \rightarrow Zn (l) + CO[↑]
- NOT spontaneous
- NOT rapid at temperatures less than 906°C (boiling temperature of Zn)
- Reverse actually true < 906°C

Reaction

- Zn (I) + CO₂ (g) \rightarrow ZnO (s) + CO[↑]
- The ZnO is due to cooling
- Primary use of Zn: galvanizing Fe and Steel
- Used in alloys
 - Brass: Cu and Zn
 - Bronze: Cu, Sn and Zn
- Used as the container part of dry cell batteries
- Used in pennies (Zn coated with a thin layer of Cu)

$Sn - from cassiterite - SnO_2$

- Used with Pb for solder (not much any more)
- Used with Cu for bronze
- Primary use: pewter and tin plate
 - Dip sheet Fe or steel in molten Sn OR by electroplating

Three Forms of Sn

- Gray Sn: powdery, non-metallic, structurally similar to diamond
- Malleable Sn: most common silver white resistant to air oxidation
 - Malleable tin at temperatures below 13.2°C "converts" to gray tin.
 - This "spreads like an infection" and si called "tin disease" or "tin pest"
- Brittle Sn: not much known about it
- Sn is the BEST metal for organ pipes and the organ pipes of N. Europe were and are subjected to "tin pest".
- Tin cans: really steel coated with Sn about 0.4-25 μ thick
- Liquid tin used for plate glass: float molten glass on it and allow to solidify

Bi

- Dense metal with yellowish tinge
- Occurs as Bi_2O_3 and Bi_2S_3
- Used in low-melting alloys due to an unusual property: it EXPANDS on freezing
- Low melting Bi alloys are used in fire alarms, electrical fuses, automatic sprinkler systems

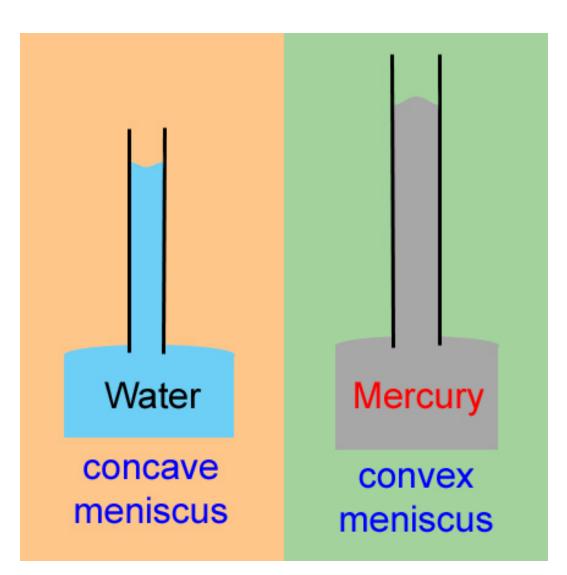
Bi

- Bi compounds used in the treatment of stomach and skin diseases
- (BiO)₂CO₃: Bismuth subcarbonate
- $(BiO)(C_6H_5O_3)$: Bismuth subsalicylate
- (BiO)NO₃: Bismuth subnitrate
- Bi2O3 alkaline
 - Dissolves in acids to give Bi(III) salts
 - Does NOT dissolve in BASE

NaBiO₃

- Sodium bismuthate
- POWERFUL oxidizing agent
- E.g.:

Mn^{2+} (colorless) + $NaBiO_3 \rightarrow MnO_4^{-}$ (purple)


Cd -- Greenockite

- Greenockite is a rare mineral source of Cd
- Occurs with Zn in ZnS ores
- Separated from Zn by fractional distillation
- Used in cores of nuclear reactors because it's an effective absorber of slow neutrons
- Used in electronics; anti-corrosion (like Zn)
- Also an essential element in human body

Hg – from cinnabar -- HgS

 $\begin{array}{c} HgS \xrightarrow{roast} Hg\left(g\right) \xrightarrow{condense} Hg\left(l\right) \\ purified by way of dilute nitric acid \\ Used in Hg barometers \end{array}$

Barometer – Meniscus – capillary tubes

Hg Barometer

- $P_{bottom} \alpha Ht_{column} * \rho_{Hg}$
- $\rho_{Hg} = 13.6 \text{ g/mL}$
- Hence if water had been used instead of Hg, column would be about 34 feet tall and have a concave meniscus

Amalgams

- Solutions of Hg
- Hg arc lamps plus lanthanide compounds are used for sporting events because they provide "white light" like daylight INSTEAD of unhealthy green light.
- Heavy metal TOXIC to humans EVEN THE VAPORS
- 0.2-0.4 g = lethal dose
- React with –SH on proteins
- Treatment: egg whites, milk for gastric ppt'ation

Po

- Intensely radioactive
- Comes from U and Th