
1

Reaction Kinetics

An Introduction
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• A condition of equilibrium is reached in a 
system when 2 opposing changes occur 
simultaneously at the same rate.

• The rate of a chemical reaction may be 
defined as the # of mols of a substance 
which disappear or are formed by the 
reaction per unit volume in a unit of time.
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• The previous rate is for the DISAPPEARANCE 
of I, therefore:
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Backwards Example
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More Complex Reactions
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In General
For the Reaction:

pP + qQ → rR + sS
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Reaction Order
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In General
For the Reaction:

pP + qQ → rR + sS
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k

A reaction with an incredibly large rate 
constant is faster than a reaction with an 

incredibly small rate constant.
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For the Reaction:
pP + qQ → rR + sS

The reaction is “n” order in [P] and “m” order 
in [Q]

OR

Is OVERALL “(n + m)” order
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KEY!!!!!!

“n” and “m” DO NOT 
necessarily equal “p”, “q”, 

“r” or “s”
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Example
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• This reaction is FIRST order in 
N2O5, NOT SECOND order as 
one might intuit from the 
stoichiometry.
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The Order of The Reaction
• = the specification of the empirical (experimentally-

determined) dependence of the rate of the reaction on 
CONCENTRATIONS

• The order may = 0, a whole number or a non-whole 
number, e.g.,
– 0
– 1
– 1½
– 2

• We’ll focus on whole numbers and 0 (zero) for reactions 
of the type:

fF + gG → Products
• AND!  The order of the reaction is defined in terms of 

REACTANTS not the products, therefore, products do 
not need to be specified
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Zero-Order Reactions
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For Zero-Order Reactions

• These reactions 
are relatively 
rare

• Occur on metal 
surfaces

• Reaction rate is 
INDEPENDENT 
of concentration 
of reactants
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First Order Reactions
• Assume reaction is 1st order in F and zero order 

in G:
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• Many radioactive decays fit 1st order reactions:
• 226Ra88 → 222Rn86 + 4He2

• 238U92 → 234Th90 + 4He2

• The rate is proportional to [F]
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The Rate is Proportional to [F]

Double [F] k [F] k [F]2 k [F]3
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Second Order Reactions:  Type 1
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Second Order Reactions:  Type 2
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Pseudo-First Order Reactions

• A special kind of 2d order reaction:
• Example
• 1 M acetyl chloride (AcCl) reacted with 56 

M water (XSSV amount) to for  HOAC and 
HCl

AcCl + H2O → HOAc + HCl
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Empirical Method in Determining 
Reaction Orders
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Example
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Practical Application
• Reaction rates are proportional to some power of 

[reactant]
• Determined by using “initial reaction rate method”
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Compare Reaction 2 with Reaction 1
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Compare Reaction 3 with Reaction 1
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• Fuse both effects and the rate equation for 
this reaction =

Rate = k [Zn] [HCl]2
• REMEMBER:
• The exponent in a rate equation generally 

does NOT match the chemical equation 
coefficients.

• The exponent MUST be determined 
experimentally.
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Another way to do this
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Compare Reaction 1 with Reaction 2
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Compare Reaction 3 with Reaction 1
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Reaction Order Half-Lives
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Example

• For the reaction:
• C → D + E,
• Half of the C is used up in 60 seconds.  

Calculate the fraction of C used up after 
10 minutes – reaction is first order in C.



37

Solution
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Example

• 14C is present at about 1.1*10-13 mol% 
naturally in living matter.  A bone dug up 
showed 9*10-15 mol% 14C.  The half life of 
14C is 5720 years.  How old is the bone?
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Solution
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Example

• A decomposition reaction occurs in a 
fixed-volume container at 460°C.  Its rate 
constant is 4.5*10-3 seconds-1.  At t = 0, P 
= 0.75 atm.  What is the pressure (P) after 
8 minutes?
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Solution
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Q10 Effect
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Example

• If the rate of a chemical reaction doubles 
for every 10°C rise in temperature, how 
much faster would the reaction proceed at 
55°C than at 25°C?
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Q 10 Effect
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Solution

• Temperature increased 30°C, therefore, 
reaction rate increases 8-fold

Example:
• What if the temperature was increased to 

105°C from 25°C?
• Temperature increased 80°C, therefore 

reaction rate increases 256-fold
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Example

• How much faster would a reaction go at 
100°C than at 25°C?

• For every 10°C increase in temperature, 
the reaction rate doubles.  The change in 
temperature is 75°C.  This is 7.5 10°C 
increases.

• Hence 27.5 = 181 times faster
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Example

• In an experiment, a sample of NaOCl was 85% 
decomposed in 64 minutes.  How long would it 
have taken if the temperature was 50°C higher?

• For every 10°C increase, the reaction rate 
doubles.  50°C increase is 5 10°C increases.

• Hence:  25 = 32 times faster
• So:  (64 minutes)/(32 times faster) = 2 minutes
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There are 4 types of temperature 
dependence for reaction rates -- 1

• Rate 
increases 
with 
increasing 
temperature

• NORMAL



49

There are 4 types of temperature 
dependence for reaction rates -- 2

• Rate increases to 
a point, then 
reduces with 
increasing 
temperature

• E.g., enzymes 
being denatured
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There are 4 types of temperature 
dependence for reaction rates -- 3

• Rate decreases 
with increasing 
temperature

• VERY RARE
• Known only for a 

few reactions that 
are multi-step 
reactions:
– A → B  Fast step
– B → C  Rate limiting step
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There are 4 types of temperature 
dependence for reaction rates -- 4

• Rate increases 
with increasing 
temperature

• Odd behavior
• Explosive reaction 

when temperature 
shoots up

• Gradual rise in 
temperature due 
to chain reactions
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• The Q 10 effect is “not entirely perfect”

• There is another way to study temperature 
dependence:

• Mathematically with Energy of Activation
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Take Natural Log (ln) of Above 
Equation

TR
E

Ak a−= lnln
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Previous Equation Can Be 
Manipulated

• If you know the rate constants for reactions at 2 
different temperatures you can calculate the Ea:
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Example

• At T1 of 308 K, k1 = 0.326 s-1; at T2 of 318 K, k2 = 
1.15 s-1.  R = 8.314 J/mol-K.  Determine Ea
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Ea -- Transition

• Top of 
Energy curve 
(“hump”) = 
transition 
state

• The smaller 
the Ea, the 
easier it is for 
the reaction 
“to go”
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Ea – “thermic”

Ea is related to ΔG
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Reaction Mechanisms
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Unimolecular Steps

• A single molecule or atom breaks down or 
rearranges itself into another species.
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Bimolecular Steps

• Collision of two molecules or atoms; relatively 
common
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Termolecular Steps

• 3 molecules or atoms collide simultaneously; 
relatively rare and SLOW
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Elementary Steps

• = each step in a mechanism; a specific 
occurrence in the reaction sequence
– The rate of elementary steps are proportional 

to the number of collisions per step
– The number of collisions per step are 

proportional to every reactant concentration
– Hence the rate of elementary steps are 

proportional to the concentration of every 
reactant
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The exponents of an elementary 
step rate equation are equal to the 
coefficients in the step’s equation
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E.g., Bi Elementary Steps
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E.g., Termolecular Elementary Steps
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Reaction Mechanisms
TWO requirements of postulated mechanisms:

1) MUST account for the postulated mechanism
2) MUST explain the experimental rate equation 

1) – INHERENT in this is the assumption that
2) 1 step is incredibly SLOWER than the others, 

hence, it determines the speed of the reaction.
3) This step is called the rate limiting step.
4) Therefore, the overall rate equation is determined 

by rate equations for the rate limiting step.
5) ALSO:  when a catalyst is present, there MUST BE 

at least 2 steps in the mechanism!
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Example

• The empirically derived rate equation for:
2NO2 (g) + Cl2 (g) → 2NO2Cl ↑ is

k [NO2] [Cl2]

• Write a two-step mechanism with a slow 
first step
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Comments

• Any steps after Step 1 will NOT effect the 
rate because step 1 is the rate limiting 
step

• Add up the 2 steps (just like in 
thermodynamics) and you get the overall 
reaction
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Illustrative Example
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Example

• The empirical rate equation for

2ClO2 + F2 → 2FClO2

Is:  k [ClO2] [F2]

• Write the reaction mechanism (2-step) 
consistent with the rate equation.
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Steady State Approximation
• The majority of mechanisms are NOT as easy as 

previous examples.
• Let’s return to our Bimolecular Reaction Step Example:
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Focus
• SO5
• This is an “intermediate” – a “transition”
• An intermediate (or transition) is a compound 

that is neither reactant nor product, rather in 
between the two.

• Intermediates are very difficult to isolate in many 
cases.

• They are highly reactive and, more often than 
not, are used up as quickly as they are formed.  
It is because of this characteristic that we have 
the Steady State Approximation
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Steady State Approximation
• The concentration of intermediate is a constant
• I.e., the rate of formation of the intermediate is 

equal to the rate of disappearance of the 
intermediate:
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Example
• 2O3 → 3O2

• Empirically derived rate equation = k [O3]2/[O2]
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• The constant of a reverse reaction is indicated 
by (-), e.g., k-1

• The intermediate in this mechanism is the 
oxygen ATOM, hence:
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• Knowing this, we need to show that the 
empirical rate equation and mechanism 
are consistent with each other.
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• Stop temporarily
• REMEMBER:  the rate limiting step is #3; 

the rate equation for this step = k3 [O] [O3]
• So, substitute the solution for [O] from the 

first for’d and bkw’d reactions in to the rate 
equation for Step 3:
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• This series of kinetic equations fulfills the 2 
requirements:

• 1)  Accounts for the products, and,
• 2)  Explains the observed rate law
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Second Example
• For 2NO + O2 → 2NO2, the empirical rate equation is:

k [NO]2 [O2]

• The postulated mechanism follows:
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• Show that the empirical rate equation and 
mechanism are consistent with each other.

• Use the methodology we used in the 
previous example.
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• The rate limiting step is step 3.
• The rate equation for step 3 is:  k2 [NO3] 

[NO]
• Substitute the solution for [NO3]  into the 

rate equation for step 3.
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Apply This to Enzymes
• Enzymes are, with a couple of exceptions, 

proteins
• Enzymes are biological catalysts
• Enzymes speed up biological reactions 

incredibly
• For this discussion:  

– E = enzyme, 
– S = substrate and 
– P = product
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• Rate limiting step is step 3
• Rate equation is:  k2 [ES]
• Substitute as before:
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Uni-Uni Reaction – Cleland Plot
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Bi-molecular Reactions

• An enzyme catalyzed reaction may utilize 
2 substrates.

• This reaction is always SEQUENTIAL, 
however,

• May be 
– ORDERED or 
– RANDOM
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E.g., Ordered Sequential Reaction

E + X + Y → E + R + S
E is still enzyme

X and Y are substrates
R and S are products
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Putative Mechanism
E + X → EX

EX + Y → EXY
EXY → ERS             SLOW STEP

ERS → ER + S
ER → E + S

And:
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• Rate Limiting Step is:  k3 [EXY]
• Substitute:

][][][][

][][][][][][][][ 21
3

21
3

EXYXEk

EXYXEkkEXYXE
k
kkk

=

=
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Kinetic Data Tells us:

• The following sequence MUST be taking 
place:

E + X + Y → EX (FIRST!) → EXY (SECOND!) → ERS → ES + R → E + S

• And is an Ordered Bi Bi Reaction
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Ordered Bi Bi Reaction –
Cleland Plot
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• In the case where separate experiments 
about the same system give 2 different 
rate equations, e.g.,

k [E] [X] [Y] [EX]
And

k [E] [X] [Y] [EY]
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Mechanism = Random Sequential 
– Cleland Plot
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• What, though, if an enzyme catalyzed a 
reaction that bound one substrate, 
released its product, then binds a 
SECOND substrate and releases ITS 
product?

Overall Reaction is:  E + X + Y → E + R + S
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Mechanism

E + X → EX
EX → ER                   1st rate limiting step

ER → E + R
E + Y → EY

EY → ES                    2d rate limiting step
ES → E + S
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• Note:  while written unidirectionally, in 
many cases the reactions are reversible

• With 2 rate limiting steps, this reaction and 
its kinetics get ugly fast.

• This sort of reaction between 2 substrates 
and the 1 enzyme act like a ping pong 
game.
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Ping Pong Mechanism –
Cleland Plot
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Function of Kinetics

• To Determine Reaction Mechanisms
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