Chapter 18 – The	NAME:	
Analysis of A Solution	Lab Section:	
	Date:	Sign-Off:
for Mg (II) Ions		

Chapter 18 – The Analysis of A Solution for Mg (II) Ions

Introduction

Mg -- Magnesium

Mg is obtained from underground brines and seawater as the chloride salt. It is a silvery-white metal. It is malleable and ductile at high temperatures. It was used in flash powders. It is still used in military flares and incendiary bombs -- it burns hot and bright. Since Al is hard at machining temperatures, Mg is alloyed with it to make Magnalium (1-15% Mg, 0-1.75% Cu and Al) or Dowmetal (8.5% Al, 0.15% Mn, 2% Cu, 1% Cd, 0.5% Zn and 87.85% Mg) which is easier to machine.

Experimental

Obtain a known sample of Group V cations and procure your super that you previously stored covered.

To both samples, add a few gtts 0.5M ammonium sulfate and 0.25M ammonium oxalate. Boil in a boiling water bath and centrifuge. Discard any ppt that may have formed. To the super, add concentrated ammonia a drop at a time until the solution is alkaline to litmus, then add 2-4 drops of 0.5M disodium hydrogen phosphate. Place some Parafilm ® on top of the tube and shake vigorously. Place in a test tube rack and let it stand for 5-10 minutes. A white crystalline ppt that is soluble in 6M HOAc is positive for Mg(II).

Flow chart and problem set follow, below.

Obtain a known sample of Group V cations and procure your super that you			
previously stored covered (" 2 S 5).			
T o both samples, add a few gtts 0.5M ammonium sulfate and 0.25M ammonium oxalate. Boil in a boiling water bath and centrifuge.			
	Ľ	<u> </u>	
2 P Discard may have	d any ppt that e formed.	S To the super, add concentrated ammonia a dro at a time until the solution is alkaline to litmus, then a 2-4 drops of 0.5M disodium hydrogen phosphate. Place some Parafilm ® on top of the tube and shake vigorously. Place in a test tube rack and let it stand f 5-10 minutes.	
		↓	
		BP A white crystalline ppt that i HOAc is positive for Me	s soluble in 6M g(II).

Problem Set -- Examination Level Problems in Qualitative Analysis

Table of K _{sp} 's		
	Chemical	K _{sp}
AI(OH) ₃	Aluminum hydroxide	1.4X10 ⁻³⁴
Cu(OH) ₂	Copper (II) hydroxide	2.2X10 ⁻²⁰
AgSCN	Silver thiocyanate	1.0X10 ⁻¹²
SnS	Tin (II) sulfide	1.0X10 ⁻²⁸
ZnS	Zinc sulfide	8X10 ⁻²⁵
CaSO ₄	Calcium sulfate	2X10 ⁻⁴
Agl	Silver iodide	1.5X10 ⁻¹⁶
AgCl	Silver chloride	1.8X10 ⁻¹⁰

Table of Standard Reduction Potentials

Half-reaction	Potential (V)
$Co^{2+} + 2e^- \rightarrow Co$	-0.28
$Mg^{2+} + 2e^{-} \rightarrow Mg$	-2.36
Au ³⁺ + 3e⁻ → Au	+1.40
$Ag^+ + e^- \rightarrow Ag$	+0.80
$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	+0.77
$Cu^{2+} + e^{-} \rightarrow Cu^{+}$	+0.15
$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$AI^{3+} + 3e^{-} \rightarrow AI$	-1.66

1. Which of the following ions does not belong with the others?

- A. Cu²⁺
- B. As³⁺
- C. Ag^+ D. Sn^{2+}

2. Which of the following ions does NOT give a strongly alkaline reaction?

- A. S²⁻
- B. HSO4
- C. SO_3^2
- D. PO₄⁻³-

3. Which anion would give a vile odor when treated with 6M H₂SO₄ and would turn lead acetate paper black?

- A. NO_2^{-1} B. SO_3^{-2} C. CO_3^{-2}
- D. S²⁻
- 4. Given the following reaction:

 $H_2SO_3 + Cu(OH)_2(s) \rightarrow Cu^{2+} + SO_3^{2-} + 2H_2O$

which of the following expressions best expresses the Keq?

- $\begin{array}{lll} \text{A.} & (\text{K}_{a}\text{K}_{w}{}^{2})/\text{K}_{sp} \\ \text{B.} & (\text{K}_{w}\text{K}_{sp}{}^{2})/\text{K}_{a} \\ \text{C.} & (\text{K}_{w}{}^{2}\text{K}_{sp})/\text{K}_{a}{}^{2} \\ \text{D.} & (\text{K}_{sp}\text{K}_{a})/\text{K}_{w}{}^{2} \end{array}$

5. Given the dissociation of aluminum hydroxide (MW = 78): $AI(OH)_3(s) \rightarrow AI^{3+} + 3 OH^{-1}$

determine the solubility of the aluminum hydroxide under the following conditions: 0.05M OH⁻.

A. 8.74X10⁻²⁹ g/L
B. 7.28X10⁻³² g/L
C. 3.024X10⁻²⁹ g/L
D. 1.75X10⁻³⁸ g/L

6. If the dissociation of H_2S in water is as follows:

$$H_2S + H_2O \rightarrow 2H_3O^+ + S^{2-}$$

and

and [H₂S] in water is 0.1M, what is the pH necessary to precipitate Zn^{2+} but not Sn^{2+} as sulfides? (10⁻⁵ rule) The solution is 0.1M in each cation.

A. 0.0837

B. 0.0353

C. -0.416

D. -0.465

7. A quick method to determine if a "silver" pebble is galena (PbS) or someone's filling (Ag-Hg amalgam) would be to treat it with:

- A. H_2SO_4
- B. HCI
- C. KOH
- D. HNO_3

8. What color would you expect lead acetate paper to turn in the previous question?

- A. Red
- B. Purple
- C. Yellow
- D. Black

9. Will silver thiocyanate form if 26 mL 0.03M silver nitrate are mixed with 74 mL 0.045M potassium thiocyanate?

- A. Yes
- B. No

10. Which ion does not belong with the others?

- A. Ca²⁺
- B. Sr²⁺
- C. Fe³⁺
- D. Ba²⁺

11. If a solution is 0.005M in Al^{3+} and Cu^{2+} ions, what percent of Al^{3+} remains unprecipitated before $Cu(OH)_2$ precipitates following the addition of KOH to the solution?

A. 0.000303

B. 4.45X10⁻²²

C. 2.49X10⁻²⁵

D. 0.50

12. How many drops (NOT parts of drops) of $12M H_2SO_4$ are required to dissolve 20 mg MgCO₃ (MW = 84.3)?

A. 2

B. 1

C. 4

D. 3

13. If an ammoniacal solution is 0.5M in NH_3 and 0.06M in NH_4^+ , and the $K_i = 1.8 \times 10^{-5}$, what is the hydroxide ion concentration in the solution?

A. 1.5X10⁻⁴M

B. 2.16X10⁻⁶M

C. 0.06M

D. 5.4X10⁻⁷M

14. Would the hydroxide ion in the previous question be enough to precipitate Cu^{2+} as $Cu(OH)_2$ if the concentration of Cu^{2+} is 0.0003M?

A. Yes

B. No

15. If you were to make a battery using Au and Au^{3+} with AI and Al^{3+} as the half cells, which metal would you need to place as the cathode?

A. Au

B. Al

C. Neither

16. What is the E_{cell}^{o} of the previous question?

- A. -3.06V
- B. 0.26V
- C. 0.40V
- D. 3.06V

17. Given the following battery ($E_{cell} = 0.121V$):

Ni|Ni(OH)₂ (sat'd), Ni²⁺||Ni²⁺ (0.1M)|Ni

Calculate the K_{sp} for Ni(OH)₂.

- A. 3.27X10⁻⁵
- B. 5.45X10⁻¹⁶
- C. 2.18X10⁻¹⁵
- D. 1.4X10⁻¹³
- 18. Given the following salts and their K_{sp} 's:

Salt	K _{sp}
CuS	8X10 ⁻³⁶
AgCl	1.8X10 ⁻¹⁰
SrCO ₃	7X10 ⁻¹⁰
ZnS	8X10 ⁻²⁵

Which compound is most soluble in water?

- A. SrCO₃
- B. AgCl
- C. ZnS
- D. CuS

19. Which compound from number 18 is the least soluble in water?

- A. $SrCO_3$
- B. AgCl
- C. ZnS
- D. CuS

20. Plaster is made up of CaSO₄ and is still periodically used to construct casts to immobilize fractures as they heal. One weakness of plaster casts is that one must wrap them in plastic when showering -- otherwise the cast will "dissolve". If the density of the plaster is 0.97 g/cm³ and one showers with water flowing at a rate of 600 L/hour and the cast is 2 cm thick, how long will it take the water to make a hole 5 cm in diameter through the cast?

- A. 0.97 hours
- B. 0.033 hours
- C. 1.98 minutes
- D. A and C
- E. B and C

21. Which of the following ions gives a carmine flame test?

- A. Na⁺
- B. Sr²⁺
- C. Ba²⁺
- D. Ca²⁺

22. Which of the following ions gives a strong, persistent yellow flame test?

- A. Na⁺
- B. Sr²⁺
- C. Ba²⁺
- D. Ca²⁺

23. Which of the following anions would give a blue coloration or precipitate which would indicate the presence of a strong reducing anion?

- A. CO3²⁻
- B. NO₃
- C. SO_4^2
- D. S²⁻

MATCHING

Match the anion with the release of the gas from the action of $6M H_2SO_4$ upon the solid sample.

24. NO₂⁻

A. Colorless, odorless gas

- 25. CO_3^{-2-} 26. S^{2-}
- 20. 0 27. SO₃₂₋

- B. Colorless gas with vile odorC. Red-brown gas with sharp odor
- D. Colorless gas with sharp odor

28. Which of the following ions WILL form a precipitate in the presence of S²⁻ and HCI?

- A. Al³⁺
- B. Sb⁵⁺
- C. Co²⁺
- D. Ni²⁺

29. Which of the following ions reacts qualitatively with dimethylglyoxime (DMG)?

- A. Ni²⁺
- B. Co²⁺
- C. Fe³⁺
- D. Mn²⁺
- E. A and B
- F. B and C

30. Our bodies depend greatly on calcium levels being carefully regulated in our blood, skeletal muscles and heart, to name a few tissues. The K_{sp} for Ca₃(PO₄)₂ at 25°C is 2.07X10⁻³³. If we assume that only the <u>total</u> average Ca²⁺ concentration in the blood (2.35X10⁻³M) contributes to the solubility of Ca₃(PO₄)₂ and that only the <u>free</u> average phosphorus concentration (0.94 mmol/L; in the forms of phosphate, hydrogen phosphate and dihydrogen phosphate) likewise contributes to the solubility of Ca₃(PO₄)₂, what does the ion product say about the Ca²⁺ and PO₄³⁻ concentrations in our blood at 37°C versus the K_{sp} at 25°C?

- A. Blood is unsaturated with the two ions
- B. Blood is saturated with the two ions
- C. Blood is supersaturated with the two ions
- D. None of the above
- 31. If the equilibrium constant for:

$$AI + 3Cu^{2+} \rightarrow AI^{3+} = 3Cu^{+}$$

is 7.13×10^{91} and R = 0.00831 kJ/mol/K at 25°C, calculate the Gibb's free energy change for this reaction.

- A. -524 kcal/mol
- B. -524 kJ/mol
- C. 524 kJ/mol
- D. 524 kcal/mol
- 32. Will the reaction in number 31 proceed as written?
- A. Yes
- B. No

33. An unknown sample in a test tube had 6M NaOH added to it, was mixed, then a piece of red litmus placed in the neck of the test tube and was covered. Within two minutes, the litmus paper did not change color. What <u>cation</u> was <u>not</u> present?

- A. NH₄⁺
- B. Mg²⁺
- C. Na⁺
- D. K^+

34. Given the following battery:

Co|Co²⁺ (0.025M)||Mg²⁺ (0.005M)|Mg

Calculate the Ecell

- A. -2.101V
- B. -0.277V
- C. +2.114V
- D. +2.37V

35. Will the reaction in the previous question "go" as written?

- A. Yes
- B. No
- 36. Given the following battery:

Calculate the $[Fe^{3+}]$ if the $E_{cell} = 0.0112V$.

- A. 0.01M
- B. 0.1M
- C. 10M
- D. 1M

MATCHING

Match the compound with the color.

- 37. Cu(NH₃)₄²⁺
 38. Ni(OH)₂
 39. CdS
 A. Yellow to orange precipitate
 B. White precipitate
 C. Green precipitate
- 40. AgCl D. Deep blue solution
- 41. Bi^o E. Jet black solution

42. Cations in the silver, lead and mercury group are precipitated as halides (specifically as chlorides). Which halides of these cations are the most soluble?

- A. lodides
- B. Bromides
- C. Chlorides
- D. Fluorides

43. A solution contains 0.04M Nal and 0.008M NaCl. AgNO $_3$ is gradually poured into this solution. Which precipitates first?

- A. AgCl
- B. Agl
- C. Both precipitate at the same time
- D. All of the above

MATCHING

Match the reaction with the product.

44.	Ag⁺ + Cl⁻	Α.	SrCO₃
45.	$Pb^{2+} + SO_4^{2-}$	Β.	AgCl
46.	$Hg_2^{2+} + 2CI^{-}$	C.	Bi(OH) ₃
47.	$Sr^{2+} + CO_3^{2-}$	D.	Cu(OH) ₂
48.	$Cu^{2+} + 2OH^{-}$	Ε.	PbSO ₄
49.	$Mn^{2+} + CIO_{3}^{-}$	F.	MnO ₂
50.	Bi ³⁺ + 3OH⁻	G.	Hg_2Cl_2

References/Sources/Bibliography

Baskerville, C. and Curtman, L.J.: **A Course in Qualitative Chemical Analysis**. (The Macmillan Company: New York) © 1915.