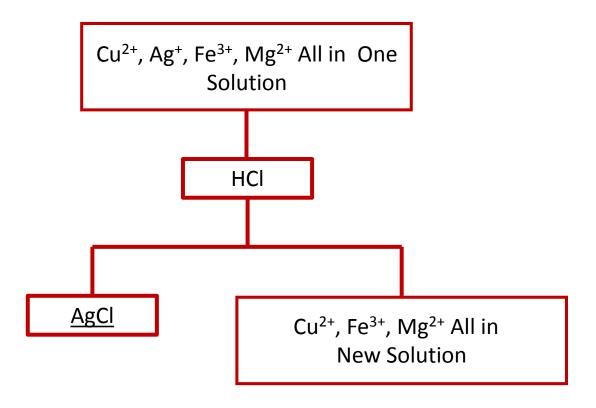
Qual and Activity Series

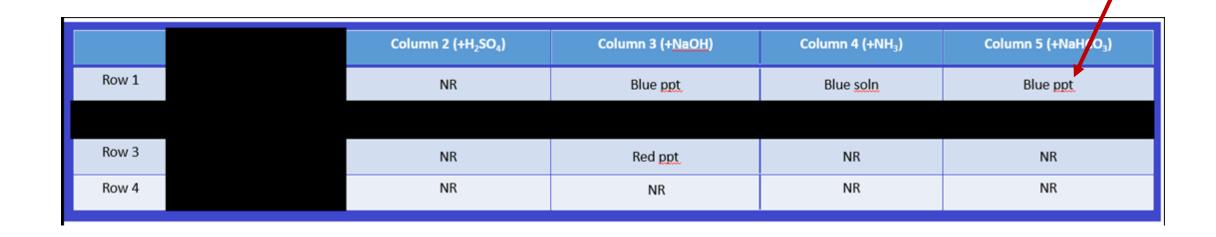
Confusion and Clarification

Intro to Qualitative Analysis

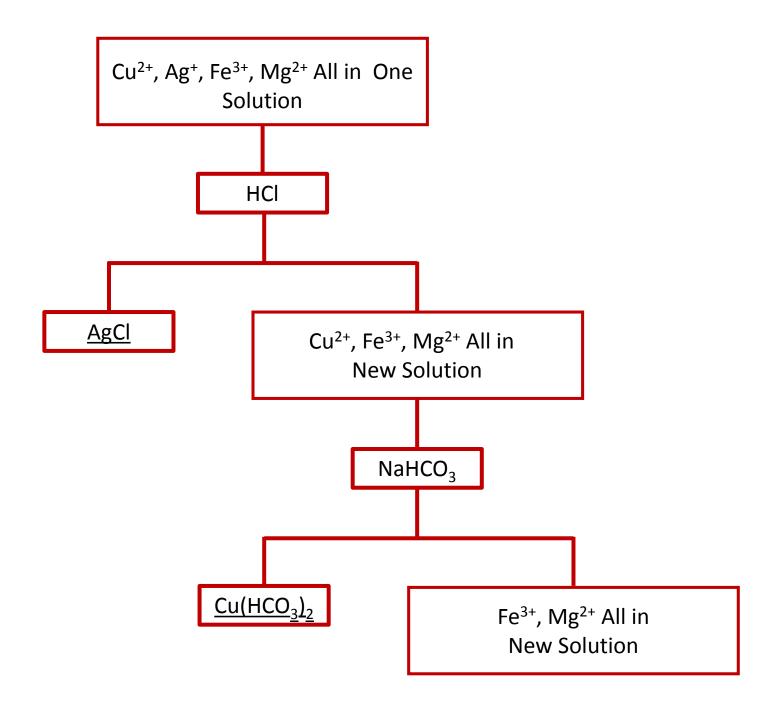
	Column 1 (+HCl)	Column 2 (+H ₂ SO ₄)	Column 3 (+NaOH)	Column 4 (+NH ₃)	Column 5 (+NaHCO ₃)
Row 1	5 gtt 2% CuSO ₄	5 gtt 2% CuSO ₄	5 gtt 2% CuSO ₄	5 gtt 2% CuSO ₄	5 gtt 2% CuSO ₄
Row 2	5 gtt AgNO ₃	5 gtt AgNO ₃	5 gtt AgNO ₃	5 gtt AgNO ₃	5 gtt AgNO ₃
Row 3	5 gtt FeCl ₃	5 gtt FeCl ₃	5 gtt FeCl ₃	5 gtt FeCl ₃	5 gtt FeCl ₃
Row 4	5 gtt Magnesia mixture	5 gtt Magnesia mixture	5 gtt Magnesia mixture	5 gtt Magnesia mixture	5 gtt Magnesia mixture

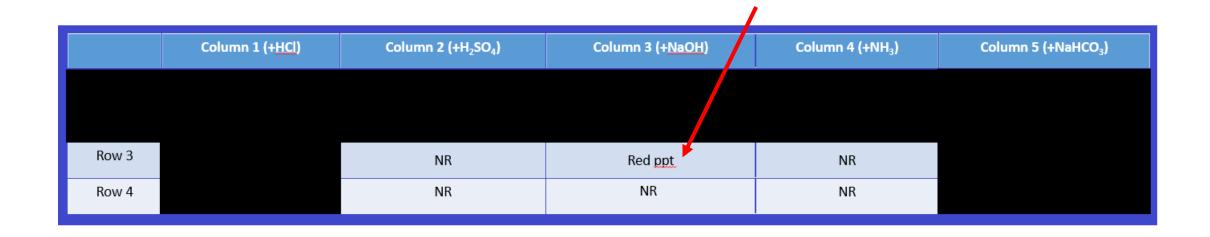

Intro to Qualitative Analysis – Data Analysis

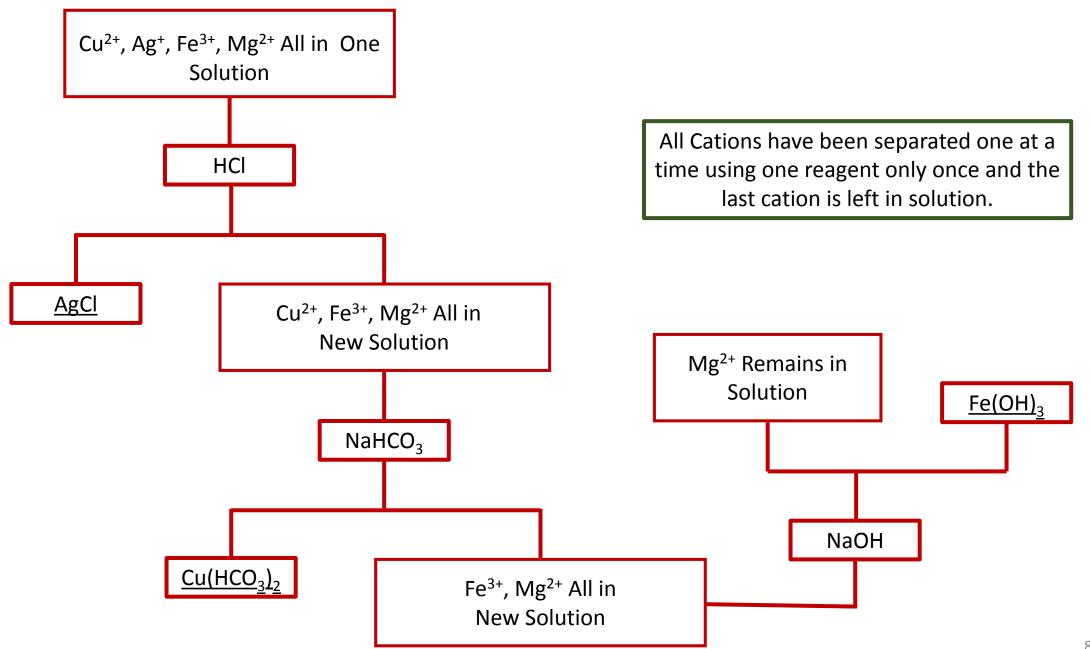
	Column 1 (+HCl)	Column 2 (+H ₂ SO ₄)	Column 3 (+NaOH)	Column 4 (+NH ₃)	Column 5 (+NaHCO ₃)
Row 1	NR	NR	Blue ppt	Blue soln	Blue ppt
Row 2	Wht ppt	NR	Brn ppt	NR	Wht ppt
Row 3	NR	NR	Red ppt	NR	NR
Row 4	NR	NR	NR	NR	NR


Step 1: Look in one <u>column</u> for only one ppt (not 2 or 3 or 4: only <u>one</u> ppt)

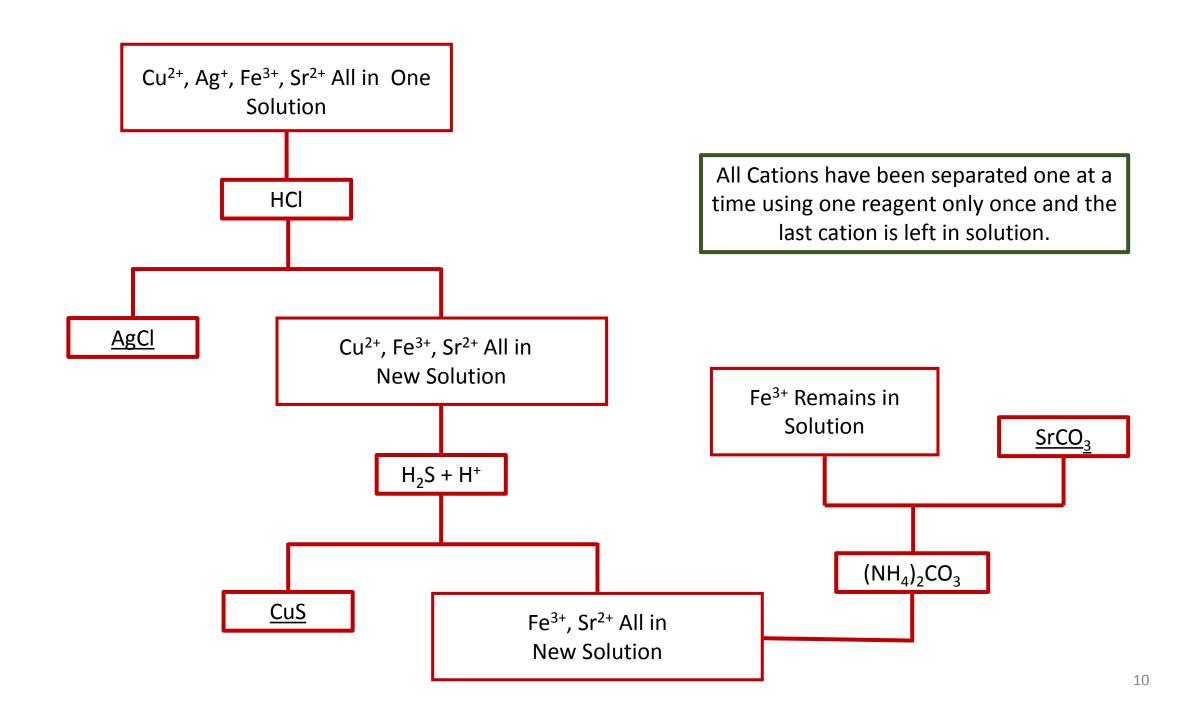
	Column 1 (+HCl)	Column 2 (+H ₂ SO ₄)	Column 3 (+NaOH)	Column 4 (+NH ₃)	Column 5 (+NaHCO ₃)
Row 1	NR	NR	Blue ppt	Blue <u>soln</u>	Blue ppt
Row 2	Wht ppt	NR	Brn ppt	NR	Wht ppt
Row 3	NR	NR	Red ppt	NR	NR
Row 4	NR	NR	NR	NR	NR


Step 2: begin your flow chart (separation scheme – remember that the idea is to remove one cation at a time as an insoluble ppt from all the others


Step 3: DONE with Column 1, Row 2: All of the Ag⁺ is gone.


Step 4: Look for another column with only ONE ppt in it — and continue flow chart

Step 3: DONE with Column 5, Row 1: All of the Cu⁺² is gone.



Step 4: Look for another column with only ONE ppt in it — and continue flow chart

Students Complete a Flow Chart to Separate the Cations – 10 minutes

Cation →	Ag ⁺¹	Cu ²⁺	Fe ³⁺	Sr ²⁺
Reagent 1	HCl	HCl	HCl	HCl
Result	White ppt	No reaction (NR)	Yellow solution	NR
Reagent 2	NaOH	NaOH	NaOH	NaOH
Result	Brown ppt	Powder blue ppt	Red ppt	NR
Reagent 3	(NH ₄) ₂ CO ₃			
Result	NR	NR	NR	White ppt
Reagent 4	H ₂ S with acid			
Result	Black ppt	Brown ppt	NR	NR
Reagent 5	H ₂ SO ₄			
Result	NR	White ppt	NR	White ppt

Activity Series

Activity Series Key: Metals higher up in the activity table ought to reduce metal ions below that metallic element (e.g., Zn + Cu²⁺ → Zn²⁺ + Cu)

Example – CONCEPT!!!!!!

Given the following series of "reactions", create an activity so reactive and ending with the least reactive "element" -- NOTE: the this is a concept question. Remember that elements higher in the sin the series.

$$C + H^{+} \rightarrow C^{+} + H^{\circ}$$

$$C + E^{+} \rightarrow C^{+} + E^{\circ}$$

$$C + I^{+} \rightarrow C^{+} + I^{\circ}$$

$$C + T^{+} \rightarrow C^{+} + T^{\circ}$$

$$C + Y^{+} \rightarrow C^{+} + Y^{\circ}$$

$$H + E^{+} \rightarrow H^{+} + E^{\circ}$$

$$I + S^{+} \rightarrow I^{+} + S^{\circ}$$

$$M + I^{+} \rightarrow M^{+} + I^{\circ}$$

$$M + S^{+} \rightarrow M^{+} + S^{\circ}$$

$$E + M^{+} \rightarrow E^{+} + M^{\circ}$$

$$T + R^{+} \rightarrow T^{+} + R^{\circ}$$

$$S + T^{+} \rightarrow S^{+} + T^{\circ}$$

$$Y + R^{+} \rightarrow NR$$

$$Y + I^{+} \rightarrow NR$$

$$Y + C^{+} \rightarrow NR$$

Given the following series of "reactions", create an activity series beginning with the most reactive and ending with the least reactive "element" -- NOTE: these are NOT real elements -this is a concept question. Remember that elements higher in the series will reduce the ion lower in the series. $H + E^{+} \rightarrow H^{+} + E^{\circ}$ $M + S^+ \rightarrow M^+ + S^\circ$ $E + M^+ \rightarrow E^+ + M^\circ$ $S + T^+ \rightarrow S^+ + T^\circ$ $Y + R^+ \rightarrow NR$ $Y + I^{+} \rightarrow NR$ $Y + C^+ \rightarrow NR$

Student Example – 10 Minutes

Refer to the following activity series' data — these are NOT real elements, they are being used as in the lab experiment to determine if you've got the concept.

$$R + E^{+} \rightarrow R^{+} + E$$

$$R + A^{+} \rightarrow R^{+} + A$$

$$R + D^{+} \rightarrow R^{+} + D$$

$$A + D^{+} \rightarrow A^{+} + D$$

$$E + D^{+} \rightarrow E^{+} + D$$

$$E + A^{+} \rightarrow E^{+} + A$$

$$D + R^{+} \rightarrow NR$$